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ABSTRACT 

	 For many years, both preclinical and clinical studies have provided evidences to sup-
port the beneficial effects of ω-3 Polyunsaturated fatty acids (PUFAs), particularly Eicosapen-
taenoic acid (EPA) and Docosahexaenoic acid (DHA) in the prevention of chronic diseases. 
However, recently, an increasing number of studies reported adverse or contradictory effects 
of ω-3 PUFAs on human health. While dose and experimental condition need to be considered 
when evaluating these effects, oxidation of PUFAs also serves as an important factor contribut-
ing to the inconsistent results. In fact, oxidation of PUFAs happens frequently during food pro-
cessing and storage, cooking and even after food ingestion. The free radicals and metabolites 
generated from PUFA oxidation may adversely affect food quality and shelf life by producing 
off-flavors and reducing nutritional values. The impact of PUFA oxidation in human health is 
more complicated, depending on the concentration of products, disease background and targets. 
This review will introduce different types of PUFA oxidation, discuss its impact on food quality 
and human health and provide some thoughts for the future research directions. 

KEYWORDS: Polyunsaturated fatty acids; Oxidation; Food quality; Human health.

ABBREVIATIONS: ALA: α-Linolenic acid; LOX: Lipoxygenase; COX: Cyclooxygenase; MaR: 
Maresin; CYP: Cytochromes P450; PD/NPD: Protectin/neuroprotectin; DHA: Docosahexae-
noic acid; PL: Phospholipase; EPA: Eicosapentaenoic acid; PUFA: Polyunsaturated fatty acid; 
GST: Glutathione S-transferase; RvD: D-series resolvin; HHE: 4-Hydroxy-2-hexenal; RvE: E-
series resolvin; HNE: 4-Hydroxy-2-nonenal; FAO: Food and Agriculture Organization; WHO: 
World Health Organization; AHA: American Heart Association.

INTRODUCTION 

	 Over the past few decades, chronic diseases including cardiovascular diseases, obesity, 
diabetes and cancer have increased rapidly in the USA and other countries of the world.1 Diet 
and nutrition are important factors in the maintenance and promotion of good health throughout 
the entire life. By far, both preclinical and clinical studies have shown that ω-3 Polyunsatu-
rated fatty acids (PUFAs) in particular Eicosapentaenoic acid (EPA) and Docosahexaenoic acid 
(DHA) exert heath beneficial effects on cardiovascular diseases, diabetes, cancer and so on.2-5 
This leads to institutions worldwide publishing recommendations on the intake of EPA and 
DHA. For instance, Food and Agriculture Organization (FAO) and World Health Organization 
(WHO) recommend adults to take 0.25-2 g EPA+DHA per day.6 American Heart Association 
(AHA) recommends daily intake of 0.5-1 g EPA+DHA per day per adult.7 

	 However, as reviewed by Weylandt et al more recently, there are controversial re-
sults regarding to the health efficacy of ω-3 PUFAs.8 On one hand, the dose and experimental 
designs may contribute to the variation in results. On the other hand, with the nature of un-
saturated bonds, PUFAs are prone to oxidation which generates various metabolites as well as 
reactive oxygen species. The extent of oxidation and the resulting metabolites may positively 
or negatively affect the efficacy of PUFAs. This review will introduce different types of PUFA 
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oxidation and discuss the effects of oxidation on food quality 
and human health.

ENZYMATIC AND NON-ENZYMATIC OXIDATION OF PUFAs 

	 With multiple unsaturated bonds, PUFA is susceptible 
to oxidation, which is categorized into non-enzymatic oxida-
tion and enzymatic oxidation. Non-enzymatic oxidation can 
be further divided into autoxidation (mediated by free radicals) 
and photooxidation (mediated by ultraviolet or singlet oxygen). 
In cells, several types of enzymes including Cyclooxygenases 
(COXs), Lipoxygenases (LOXs) and Cytochromes P450 (CYPs) 
are able to oxidize PUFAs and generate various metabolites.9 

Non-Enzymatic Oxidation 

	 In autoxidation, the reaction is mediated by free radi-
cals, giving rise to a lipid hydroperoxide as the primary oxida-
tion product.10 In many cases, hydroperoxides can be further 
oxidized to ketones and ultimate malonaldehyde.11 Hydroxy al-
kenals such as 4-Hydroxy-2-nonenal (HNE), generated by per-
oxidation of ω-6 PUFAs,12-14 and 4-Hydroxy-2-hexenal (HHE), 
a product from peroxidation of ω-3 PUFAs15-17 are also widely-
studied autoxidative products of PUFAs. Apart from autooxida-
tion, PUFAs are susceptible to light-induced photooxidation: 
photochemical oxidation and photosensitized oxidation.18 The 
former one is initiated during exposure to ultraviolet irradia-
tion. Photosensitized oxidation, instead, requires photosensitiz-
ers (i.e. chlorophyll, hemeprotein, riboflavin and synthetic dyes) 
and visible light.19 The reaction can be categorized into two 
types: Type I reaction involves the production of free radicals 
by interaction of the excited sensitizer with a substrate; Type 
II reaction involves generation of singlet oxygen which further 
reacts with PUFAs to produce hydroperoxides.20,21 In this case, 
vegetable oils with chlorophyll-like pigments are likely to un-
dergo photooxidation during storage. 

Enzymatic Oxidation 

	 In enzymatic oxidation, Phospholipases A2 (PLA2) is 
the major phospholipase that cleaves phospholipids at the sn-2 
position resulting in free PUFAs and lysophospholipids.22 Af-
ter freeing from membrane, PUFAs can be further catalyzed by 
COXs (COX1 or COX2) to form prostaglandin H2. It is unstable 
and can be converted into various prostanoids depending on the 
cellular prevalence of terminal prostanoid synthases.23,24 In ad-
dition to COX, free fatty acids can be converted by LOXs to 
form hydroperoxides. LOXs belong to a family of dioxygenases 
which catalyze the insertion of molecular oxygen into PUFAs 
with at least one cis, cis-1,4-pentadiene in the structure.25 Some 
of the LOX-catalyzed products have recently been discovered as 
potent lipid mediators. For example, enzymatic oxygenation of 
EPA yields new metabolites, named E-series Resolvins (RvEs), 
which were the first omega-3 lipid mediators reported to resolve 
inflammation via receptor-specific actions.26-28 Likewise, DHA 
can form D-series Resolvins (RvDs),29,30 Protectins/neuroprotec-

tins (PDs/NPDs)31-33 and Maresins (MaRs)34-36 through enzymes-
mediated oxygenation. Those metabolites have been widely 
studied to dampen or resolve inflammation, protect from renal 
or brain dysfunctions, etc. COXs and LOXs can also convert ω-3 
and ω-6 PUFAs into different series of prostaglandins, throm-
boxanes and leukotrienes.37 CYPs are better known for their role 
in xenobiotic metabolism. However, they can also transform 
PUFAs to epoxy-, monohydoxylated-and dihydroxylated-me-
tabolites. Recent work using recombinant human CYP enzymes 
has identified the predominant products from the expoxidation 
of EPA and DHA as 17,18-epoxyeicosatetraenoic acid and ep-
oxy docosapentaenoic acid, respectively.38

IMPACT OF PUFA OXIDATION ON FOOD QUALITY

	 Plant oils and fish are known as major sources of ω-3 
PUFAs. Soybean oil, canola oil are commonly consumed oil 
and are rich in α-Linolenic acid or Alpha-linolenic acid ((ALA), 
7.8-9.2%), while some fatty fish including salmon, sardine, and 
menhaden contain abundant EPA and DHA (17%-27% of total 
fatty acids). Other dietary sources of ω-3 PUFAs include nuts, 
seeds, egg yolk, etc.39,40 With the recognition of the health ben-
eficial effects of ω-3 PUFAs, there is a growing industry provid-
ing novel sources of ω-3 PUFAs such as fish oil capsules, algae 
products and food enriched with ω-3 PUFAs.41 Our lab recently 
used defatted green microalgal biomass to enrich ω-3 PUFAs in 
chicken meat42 and eggs (unpublished). 

	 Susceptibility of lipid peroxidation in food depends on 
the lipid composition, the presence of prooxidants and antioxi-
dants, oxygen levels, temperature, light and processing meth-
ods.43 PUFA-rich foods are more susceptible for lipid oxidation. 
Likewise, presence of prooxidants such as redox active metals 
(Fe, Cu) and hemeproteins, exposure to high oxygen levels and 
high temperature may accelerate oxidation process. Lipid oxi-
dation often brings problems in food processing and storage. 
First, it negatively affects food flavor due to the formation of 
aldehydes and ketones. Oxidation of PUFAs produces a com-
plex mixture of volatile secondary oxidation products, and these 
cause particularly objectionable off-flavors.44 For example, soy-
bean oil can undergo “flavor reversion”, a type of light-induced 
oxidation.45 It has been suggested that the oxidation of ALA in 
soybean oil is responsible for the formation of 2-pentylfuran 
and its isomer, which may result in flavor reversion.46 Butter en-
riched with unsaturated fatty acids or conjugated linoleic acid 
may be susceptible to off-flavor by generation of oxidized prod-
ucts including 3-methyl-1H-indole (mothball-like), pentanal 
(fatty), heptanal (green) and butanoic acid (cheesy).47 Second, 
lipid oxidation may reduce the nutritional value by causing the 
destruction of essential fatty acids and the lipid-soluble vitamins 
A, D, E, and K as well as the decrease in caloric content.48 Third, 
free radicals and metabolites formed during oxidation may exert 
adverse effects on human health.49 More details of impact on hu-
man will be discussed in the next section. 
	
	 Given lipid oxidation-triggered negative effects, mul-
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tiple methods have been applied to reduce or prevent lipid oxida-
tion so as to improve the food quality. The most commonly used 
method is addition of antioxidants. Since the 1940’s, it is known 
that vitamin E is a major lipophilic chain-breaking antioxidant 
which protects tissue PUFAs against peroxidation50 Serfert et 
al found a combination of tocopherols (rich in the δ-derivative 
and low in the α-derivative), ascorbyl palmitate and trace metal 
chelators (lecithin or citrem) efficiently stabilized the oil during 
microencapsulation. Addition of rosemary extract in the micro-
encapsulated oil further retarded autoxidation during storage.51 
Besides vitamin E, other vitamins or precursors like ascorbic 
acid and β-carotene were shown antioxidant activity in food 
system.18,52 Plant bioactive compounds particularly polyphenols 
have been widely reported to have antioxidant effects. For ex-
ample, apple skin extracts prepared from “Northern Spy” culti-
var were found effective in reducing the lipid oxidation induced 
by heat, Ultraviolet (UV) light and peroxyl radicals.53 Although 
it is plausible that natural polyphenols could prevent lipid oxida-
tion, the approach of incorporating polyphenols into food and 
the effects of polyphenol additives on food flavor are not com-
pletely understood. In addition to the antioxidant supplementa-
tion, other methods are used to reduce lipid oxidation. Arruda et 
al reported that using nitrogen flushing to remove oxygen in the 
headspace of bottled soybean oil increased the sensory quality 
during storage. Shelf life can also be increased from 60 up to 180 
days as the initial oxygen concentration is reduced from >15% 
to <3%.54 Larsen et al found that cups with a high light barrier 
(incorporation of a black pigment into the packaging material) 
can sufficiently protect the sour cream from getting rancid due to 
photooxidation.55 

IMPACT OF PUFA OXIDATION ON HUMAN HEALTH

	 In human body, PUFA is susceptible to oxidation un-
der the exposure of free radicals and enzymes such as COXs, 
LOXs and CYPs. An increasing number of studies have been 
conducted to identify the oxidation pathway of PUFAs and re-
lated metabolites. However, the impact of PUFA oxidation on 
human health remains elusive.

	 HNE, a product from ω-6 oxidation of PUFAs, has been 
found in many diseases including atherosclerosis,56,57 neurode-
generative diseases,58,59 cancer60,61 and so on. Indeed, Uchida et 
al have recently found that HNE markedly induced intracellular 
ROS production in cultured rat hepatocytes RL34 cells.62 This 
pro-oxidant effect of HNE was also observed in human neuro-
blastoma SH-SY5Y cells.63 Awada et al reported that oxidized 
PUFAs (rich in HNE and HHE) induced oxidative stress and in-
flammation in mice and in human intestinal Caco-2/TC7 cells.64 
In human trials, Jenkinson et al also found that high PUFA diet 
(15% PUFA) significantly increased whole blood oxidized glu-
tathione and urinary thiobarbituric acid reactive substances, in-
dices of oxidative stress, in healthy male subjects.65 Interestingly, 
PUFA oxidation products have also been reported to activate 
antioxidant pathways which detoxify cytotoxic xenobiotics. For 
instance, HNE has been shown to enhance the gene and protein 

expression of class P Glutathione S-Transferase (GST-P) as well 
as the total GST activity in normal rat liver epithelial cells.66 
HNE can also activate antioxidant response element, leading 
to the induction of class A GST isozymes, such as GSTA1 and 
GSTA4, in rat clone 9 hepatoma cells.67 In addition, HHE up-
regulated nuclear factor, erythroid 2-like 2, an important regula-
tor of antioxidant responses in the heart of high fat-fed mice.68 
The bi-directional effects of HNE or HHE are concentration de-
pendent. HNE at concentration lower than 10 μM tends to exert 
beneficial effects while higher concentrations may have toxic 
effects.69 As supported by Zhang et al, treating cardiomyocytes 
with small, subtoxic doses (5 μM) of HNE offered protection 
from subsequent exposure to toxic doses (>=20 μM).70

	 Over a decade, a growing number of PUFA metabolites 
have been discovered, including ω-3 PUFAs-derived resolvins, 
protectins, maresins, prostaglandin-3-, thromboxane-3- and 
leukotriene-5-series as well as ω-6 PUFA-derived prostaglan-
din-2-, thromboxane-2- and leukotriene-4-series.37,71 ω-3 PU-
FA-derived metabolites have shown potent anti-inflammatory, 
tissue protective and resolution-stimulating functions. For in-
stance, RvDs and PD1/NPD1 inhibit neutrophil infiltration into 
injured kidneys, block toll-like receptor-mediated inflammatory 
activation of macrophages and mitigate renal dysfunctions.72 

Recently, Chiang et al demonstrated a previously unrecognized 
role of GPR18 as a receptor for RvD2 that stimulates effero-
cytosis and mediates the resolution of inflammation.73 Anoth-
er type of lipid mediator, MaR1 and MaR2 were identified to 
have potency at enhancing human macrophage phagocytosis 
and efferocytosis.34,74 ω-3 PUFAs-derived prostaglandin-3- and 
leukotriene-5-series have been found to exert anti-arrhythmic 
and anti-inflammatory effects, respectively. By contrast, 
ω-6 PUFAs-derived prostaglandin-2-series have shown pro-
arrhythmic effects and leukotriene-4-series from ω-6 PUFAs 
have presented pro-inflammatory effects.37,75 This indicates that 
enzymatic oxidation products of ω-3 and ω-6 PUFA may exert 
opposing effects on human health. 

	 From current studies, we learnt that more PUFAs do 
not necessarily yield better effects as they may undergo oxida-
tion and produce metabolites that exert adverse effects at high 
levels. Co-supplementation with antioxidants such as vitamin C 
and vitamin E may reduce autoxidation of PUFAs and poten-
tially enhance the efficacy. In addition, increasing ω-3 to ω-6 
ratio in the diet is likely to produce more beneficial metabolites, 
thereby enhancing efficacies of PUFAs. The optimal dose of PU-
FAs, antioxidant supplementation as well as ω-3 to ω-6 ratio, 
however, require additional research evidences. 

CONCLUSION 

	 As summarized in Figure 1, through non-enzymatic 
and enzymatic oxidation, PUFAs are transformed to various 
metabolites. In most cases, oxidation of PUFAs results in off-
flavors and reduction of food quality and shelf life. The oxida-
tion may induce oxidative stress and inflammation when the 
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metabolites are at high concentrations. At low concentrations, 
the metabolites may exert antioxidant effects. The enzymatic 
oxidative products of ω-3 and ω-6 PUFAs may have opposing 
effects on inflammation and cardiac arrhythmicity. At present, 
the functions and working mechanisms of PUFA metabolites are 
not completely understood. Moreover, whether PUFA itself or 
oxidized PUFA metabolites play more important roles in vari-
ous disease context remains unclear. Herein, future studies are 
needed to tackle these problems.
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