Systematic Review

Arianna Di Stadio, MD, PhD

Department of Otolaryngology
University “La Sapienza”, 00185 Rome, Italy
E-mail: ariannadistadio@hotmail.com

Volume 2 : Issue 5
Article Ref. #: 1000OTLOJ2128

Arachnoid Cyst of Internal Auditory Canal: how the Temporal Bone Findings Explain Ear Symptoms and Suggest the Best Treatment to do

Arianna Di Stadio, MD, PhD

Department of Otolaryngology, University "La Sapienza", 00185 Rome, Italy

ABSTRACT

Objective: Aim of this short review is to identify relevant findings in clinical and surgical treatment studying arachnoid cyst of internal auditory canal.

Study design: Retrospective study of relevant papers in literature.

Methods: PubMed and Google Scholar searches using the following keywords: arachnoid cyst, internal auditory canal, temporal bones study, schwannoma of internal auditory canal, cystic schwannoma, MRI findings, surgery of internal auditory canal. Only the article where three keywords, included always arachnoid cyst, were considered. The study analyzed the etiopathogenesis of arachnoid cyst, hearing and vestibular symptoms and temporal bone findings.

Review and conclusion: The author identified and reviewed a total of 46 articles. The results showed high incidence of hearing loss that was the more common symptom than vestibular one. Arachnoid cyst carried out more compression on the vestibular nerves than on the cochlear one. The review allowed us to identify which mechanism of damage arachnoid cyst acting on the nerves. It is necessary to consider the arachnoids cyst in differential diagnosis with tumors and pathologies involving the internal auditory canal.

KEYWORDS: Arachnoid cyst; Internal auditory canal; Temporal bones study; Schwannoma of internal auditory canal; Cystic schwannoma; MRI findings; Surgery of internal auditory canal.

INTRODUCTION

Arachnoid Cyst (AC) of Internal Auditory Canal (IAC) is a very rare finding. Sumner and Thijsen described the first clinical case in the beginning of ’70.1,2 Schucknecht, in 1993, identified this structure in the internal auditory canal of three temporal bones. Arachnoid cyst can be found in 50% of cases in the Sylvian fissure, in the posterior fossa in 20% and in the Ponto Cerebellum Angle (APC) in 10% of case. In children the higher incidence is in the middle cranial fossa.4 AC are discovered in the 0.5% of surgery to treat the tumor of internal auditory canal, sometimes as accidental findings or mistaken as Schwannoma.3 The author tries to define when and if, the Arachnoid cyst needs to be considered in differential diagnosis in presence of hearing loss, dizziness and facial palsy.

ARACHNOID CYST ETIOPATHOGENESIS

The etiology of arachnoid cyst is poorly understood. Congenital/primary6,6 and inflammatory origin/secondary6,7 could explain its births and growths. Two mechanisms can determinate an arachnoid cyst. One, is the inflammation, that can explain the primary cyst too. The leptomeningeal infection can be acquired prenatally through placenta.8 This inflammation produces a localized scarring and adhesion involving the subarachnoid space, leading to a flocculation and closure of its communication with the adjacent subarachnoid compartment.8,9 The cyst usually contains a clear colorless fluid. Their wall consists of a vascular collagenous membrane lined by a flat single-layered arachnoid endothelium. The presence of fibrous thickening
and chronic inflammatory cells suggest a post infection or post traumatic origin. The second mechanism involved in cyst formation is the splitting of arachnoid membrane. This is probably the most common between the two. Also in this second case, cyst contains clear colorless fluid but the wall is regular without thickening and similar to the normal arachnoid membrane. The clear fluid is similar to cerebrospinal fluid (CSF) but may have a higher concentration of protein than CSF. The variation in cyst volume is widely discussed in literature. There are different theories to explain the mechanism: 1) The outer arachnoid cells liquid production; 2) The slit valve mechanism causing intermittent entrapment of CSF; 3) Osmotic gradient between the cysts. The slit valve mechanism seems to be the more probable cause of the growth, because liquid production is very rare by the cells, as the osmotic gradient.

SYMPTOMS

Arachnoid cyst can be asymptomatic or symptomatic in function of its volume and its position in the internal auditory canal (Figure 1). Sumner described as first a facial paralysis as sequel of an arachnoid cyst of internal auditory canal in a child. He reported a case of child 3 years old with facial paralysis; the arachnoid cyst compressed the nerve determining a facial palsy. Thijssen as Sumner described a peripheral facial palsy in a 7 year old girl, in this case deafness in the same side of facial palsy was present. In 1986 Hardenberg described an AC in the internal auditory canal pervasive to the region of the oval window with disturbance of ossicular chain function.

Schucknecht reported three cases of arachnoid cyst of internal auditory canal, two of the three patients presented bilateral sensorineural hearing loss, the third case showed a mixed hearing loss with speech discrimination at 68%. Francis reported a case of AC of right internal auditory canal in a 50 year woman that presented with progressive hearing loss and tinnitus and occasional loss of balance; neuro-otological examination showed a profound sensorineural hearing loss in the right ear and a paralysis of right lateral semicircular canal reflex. Takano described a 59 years old woman with facial spasm and tinnitus in the left side persistent since 3 years, also in this occasion TC and T2 MRI showed the presence of an arachnoids cyst. Aubry presented another case of symptomatic arachnoid cyst, in his case report the patient showed hearing loss, tinnitus and recurrent vertigo. Mastronardi identified an AC in a patient affected by left hemifacial spasm since 10 years. Fleck described one patient affected by unilateral sensorineural hearing loss associated with tinnitus. Zhang, in a multi case report, presented a patient with sensorineural hearing loss and tinnitus without ABR response in the ear and other two patients didn’t present any symptoms. Tamarind presented a 10 years old boy with facial palsy and hearing loss.

We can conclude that hearing loss is the most common symptoms in patients affected by arachnoid cyst of internal auditory canal followed by facial nerve disorders (Figure 2).

TEMPORAL BONE AND SURGERY FINDINGS

Few TBs studies are available in literature due to the low incidence of arachnoid cyst in human subject. Surgery case reports describe widely the findings of internal auditory canal in case of arachnoids cyst resection. Figure 3 shows the different findings in displacement and compression of the nerves between the TBs studies and surgery. Figures 4 and 5 summarized dif-
different distribution between displacement and compression between the nerves. Vestibular nerves seem to be most frequently compressed (54%) than cochlear nerve (29%). The facial nerve is more frequently displaced (54%) but less compressed (17%). Figure 6 shows the otopathology aspects of the cyst in the IAC.

MECHANISM OF DAMAGE

Erick studied the average of diameter of internal auditory canal using MRI study on more 1230 patients and, he identified 5.93 mm as caliber of internal auditory canal. It’s easy understand that in this small space, also a small structure (within 1 mm) can produce a nerves compression. The compression process starts when and if the cyst changes its volume. The first step is a nerve displacement in case of cyst under 1 mm. Figure 1 showed how cyst can arise in different areas of IAC and can displace one or more nerves. An AC in central position in the IAC (blue in Figure 1) with growth compresses the four nerves against the wall of IAC, probably a cyst in this position can be symptomatic also in volume <1 mm. A cyst in the lateral position (yellow in Figure 1) with growth displaces both nerves against the wall of IAC, probably a cyst in this position can be symptomatic also in volume <1 mm.
DISCUSSION

Literature supports the idea that arachnoid cyst of Internal Auditory canal can be symptomatic. Compression and displacement of vestibular nerves seem to be more common than cochlear nerve.

Vertigo and dizziness are less common than hearing loss because cyst normally has a slow growth and it allows an adaptive mechanism by the vestibular apparatus that involves somatosensory (proprioception) and vision other than the ear.

We have to consider a cyst involvement, in case of recurrent facial palsy, without regression after several months.

Sensorineural Hearing Loss (SNHL) can be progressive and asymptomatic in the beginning, but can become “the pure” symptom of arachnoid cyst. The audiogram shows a unilateral sensorineural hearing loss with a sloping threshold involving all frequencies.

Word recognition test and ABR can help in diagnosis. WR recognition test is worse than expected from audiometric threshold. ABR results destructured presenting prolonged latencies of 1st, 3rd and 5th peak.

The progressive SNHL in AC, is a phenomenon due to neurodegeneration, so word recognition test and ABR can detect this event more quickly than Pure Tone Audiometry.

Arachnoid cyst can be discovered as accidental finding during a schwannoma surgery, because it is often confused as cystic Schwannoma. Arachnoid cyst and acoustic schwannoma can present same symptoms and onset.

Using imaging MRI today is possible figure out the correct diagnosis. Arachnoid Cyst appears as well demarcated area, hypo intense on T1 weighted imaging and hyper intense on T2 weighted imaging, without contrast enhancement with gadolinium. Acoustic schwannoma enhances gadolinium in homogenous way; it is intense to CSF and present different shapes: round (14%), oval (36%) and poliglobular in 14% of cases. The acoustic cystic schwannoma exhibits higher signal intensity than CSF in T1- and T2- weighted Figures, and the intramural cyst showed peripheral enhancement after gadolinium.

Schwannoma and Arachnoids Cyst have similar symptomatology analyzing audiometric and vestibular findings. A sudden onset of symptoms is rare in both pathologies even if, in case of rapid growth of cystic schwannoma the symptom becomes quickly disabling for patient. Arachnoid cyst has usually a slow growth, slight symptoms and these are usually not referred by the patients as disabling.

Differential diagnosis is very difficult in case of pathologies involving the IAC. Common symptoms are presented by different types of cancers/masses; nerves compression or involvement is always present due to the small caliber of IAC. Vestibular symptoms as dizziness, hearing loss and tinnitus and, in some case facial palsy, reveals the nerve involving and damage.

Table 1 summarizes cancer and/or mass (common and rare) that can arise in the IAC.

<table>
<thead>
<tr>
<th>Arachnoid Cyst versus</th>
<th>Schwannoma</th>
<th>Ganglioma</th>
<th>Giant Cell Tumor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meningioma</td>
<td>Lipoma</td>
<td>Teratoid/Rhabdoid tumor</td>
<td></td>
</tr>
<tr>
<td>Gliosarcoma</td>
<td>Cavernous Angioma</td>
<td>Metastasis</td>
<td></td>
</tr>
<tr>
<td>Hemangiopericytoma</td>
<td>Solitary Plasmacytoma</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Differential diagnosis.

The conservative approach using gamma knife therapy can be useful if Schwannoma has a small volume.

The posterior fossa approach is the best option to treat meningioma.

Symptoms as manifestation of nerves involvement help us also to chose the treatment. Good hearing threshold and vestibular function preservation are findings often present in arachnoid cyst, this suggests that a middle temporal fossa approach or a retrosigmoid one can be the good option to preserve the nerve functions. The endoscopic approach would be the best choice but not all surgeons are comfortable with it.

The translabyrinthine approach is always the best option to treat big mass in patients with hearing loss.

It is possible to remove the arachnoid cyst in one block, or to fenestrate it, removing part of liquid content and, then to remove its capsule. The endoscopic surgery needs to fenestrate the cyst before whole removal especially in case of big mass. Using a middle fossa approach the whole mass removal is easy to do.
Audio-logic and vestibular evaluations are important before diagnosis, and after treatment also.

As before exposed, test results are able to address the specialist into the correct diagnosis. It is necessary to schedule one year follow-up also in patients after cyst removal, even if arachnoid cyst rarely recurrent.

Arachnoid cyst surgery can determinate some sequelae, that have to be treated correctly. Vestibular rehabilitation is the gold standard to achieve vestibular compensation. Facial nerve palsy can be treated by physical rehabilitation, or using surgical procedure in inveterate case. Residual hearing loss is successfully treated using temporal bone anchorage device.

CONCLUSION

The author concluded even if AC is a very rare finding, it is always necessary to consider it as differential diagnosis of mass in the IAC. The SNHL is the most common symptom in the mass of IAC. Hearing test as pure audiometry, WR and ABR are helpful in diagnosis identification. MRI findings are fundamental to detect the pathologies origin and the recent improvement of this methodology helps us to understand the findings more easily. Undoubtedly, the most difficult differential diagnosis is the one with Cystic Schwannoma, but a strict follow-up can detect the correct findings. Further researches improving the quality of MRI will be necessary to identify the AC with accuracy.

ACKNOWLEDGEMENT

Special thanks to Professors Joseph Nadol and Micheal McKenna to allow the use of images from Otopathology collection of MEEI and to Mrs Garyphallia Patagonis for her help in the graphics and images production.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

17. Aubry K, Wassef M, Guichard JP, Herman P, Tran Ba Huy P. Association of an arachnoid cyst with heterotopic neuroglial tis-

29. Reimann K, Arnold H, Bisdas S, et al. Cavernous angio-

40. Herdman SJ, Clendaniel RA, Mattox DE, Holliday MJ,

